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ABSTRACT 

        This thesis investigates the environmental variables that influence the accuracy of Landsat 8 

thermal infrared (TIR) imagery-derived stream temperatures in a ground-truthing study on the 

Anchor River basin in Southcentral Alaska. From May 1st to September 30th, 2015, in-situ 

temperature data were collected concurrently with the remotely sensed Landsat 8 TIR images at 

ten field sites throughout the Anchor River watershed. At each field site, stream delineations 

were preformed to assess the influence of riparian vegetation, stream morphology, discharge, and 

air temperature on TIR-derived stream temperatures. The accuracy of TIR data was assessed by 

calculating the Landsat Thermal Offset (LTO), the difference between TIR-derived temperature 

and the in-situ stream temperature (TIR – In-situ =LTO). A Generalized Additive Model (GAM) 

was employed to examine the relationship between environmental variables and LTO. Model 

selection with Akaike information criterion (AIC) determined that Rosgen Stream Classification 

(Rosclass), 7-day trends in stream discharge (Gagediff), and daily average air temperature 

(Airdaily) were strongly associated with Landsat 8 thermal offset (LTO). Stability in stream 

discharge (Gagediff = ±0.2 ft.) in the week preceding a Landsat TIR data collection event, 

coupled with stream morphology characteristics consistent with Rosclass B and C reaches, were 

associated with the highest accuracy of raw Landsat TIR-derived stream temperatures. Across all 

sites and dates, GAM regressions accurately translated raw Landsat TIR data into temperatures 

reflecting in-situ water temperatures in small order streams. While regression analyses supported 

Rosclass, Gagediff, and Airdaily environmental covariates as being influential in explaining 

LTO, the underlying mechanisms that these variables reflect remains an open question.  These 

variables may indicate conditions that lead to stream stratification, or alternatively, may reflect 

other environmental processes leading to stronger temperature differentials between temperature 
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in the stream and that on the surrounding riparian land. Continued validation efforts in other high 

latitude watersheds over longer time periods will be important for testing the robustness of 

methods to utilize Landsat TIR-based stream temperature predictions, progressing towards a goal 

of providing a broad-scale tool for fisheries and watershed managers to assess the degree of, and 

potential impacts from, climate change on Alaskan freshwater aquatic and fishery resources.  
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INTRODUCTION 

Alaska is experiencing the greatest regional warming of any state in the country. Since 

1960, state-wide average annual air temperatures have increased by 2 °C and winter temperatures 

have risen by 4 °C (Chapin et al. 2014). This warming has led to earlier spring snowmelt, 

reduced sea ice, widespread glacier retreat, drier landscapes, and inland surface water 

temperature increase (Chapin et al. 2014). In parallel with warming, there have been decreases in 

adult Chinook salmon (Onchorhynchus tsawytscha) returns, shifts in predominant age at 

maturity, and decrease in size-at-age of juveniles (Evenson and Carlile 2014; Mantua et al. 

2015). These trends are concerning, and it is plausible that warming climate may be impacting 

Chinook salmon in Alaska (McPhee 2015; Schindler et al. 2015). However, the direct and 

indirect effects of regional warming on Pacific salmon population dynamics are not well 

understood due to major gaps in stream temperature data throughout high-latitude watershed 

basins. 

Water temperature structures fish species’ distributions, abundance, life histories via 

direct (e.g. metabolic rates, dissolved oxygen) and indirect (prey species distribution and 

abundance) mechanisms (Bunn and Arthington 2002). For salmonids, stream temperature 

influences spawning, incubation success, egg maturation, growth, migration, and competitive 

ability (Armour 1991), and, as such, natal stream temperatures are correlated with fish survival 

and may thereby influence abundance (Griffiths and Schindler 2012). 

Throughout Alaska, state and federal agencies monitor juvenile salmonid size, age, and 

species; however, a similar effort to monitor the temperature environments of salmon rearing 

streams at landscape scales, which may be a leading indicator of population trajectories, has not 

been a priority. This may be in part because monitoring stream temperature in Alaska is 
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particularly difficult due to the size and remoteness of salmonid-producing watersheds. For 

example, the Yukon River has 48 named tributaries and drains 13 basins totaling 832,700 km² 

(Brabets et al. 2000). Efforts to collect in-situ water temperature data (sampled directly from the 

stream) have proven to be costly, time consuming, and only represent a small portion of a 

watershed’s thermal profile (Togerson et al. 2001).  

 Although several of these in-situ water temperature collection efforts have been made 

regionally, the amount of available stream temperature data for Alaska remains limited (Geist et 

al. 2014). An alternative solution may be found in collecting stream temperature data on a 

watershed scale using remote sensing techniques. Appropriately calibrated remotely-sensed TIR 

may be suitable for examining the relationships between stream temperatures and salmon growth 

and population fluctuations year-round with reduced cost and logistical demands relative to field 

sampling.  

Background  

Hypotheses regarding how landscape-scale temperature change affects fish physiology 

and habitat productivity have existed for several decades (Schlosser 1991). However, due to the 

challenge in collecting landscape-scale temperature data, understanding the relationships 

between stream temperatures and fish populations at large temporal and spatial scales remains 

nascent. Schlosser (1991) proposed that the interface between terrestrial and aquatic ecosystems 

are variable based on hydrologic conditions, thus fish refugia are influenced and created by a 

wide range of dynamic processes. Schindler et al. (2015) found that observing ecological 

heterogeneity and the processes that generate it across landscapes are a crucial component of 

management and conservation of juvenile salmonid watersheds. Thus, landscape-scale remotely-
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sensed stream temperature data provide opportunity to analyze relationships between large-scale 

spatial and temporal trends and critical juvenile salmonid life stages.  

Thermal infrared imagery (TIR) is widely available and can accurately characterize 

waterbody thermal heterogeneity (Torgersen et al. 2001; Cristea and Burges 2009). Satellite-

derived TIR has been used to successfully map surface thermal heterogeneities of large water 

bodies such as lakes (Simon et al. 2014) and estuaries (Wawrzyniak et al. 2012), and has been 

used for mapping spatial variability of stream temperature (Torgersen et al. 2001; Handcock et 

al. 2006).  

TIR has a broad range of remote sensing applications including glacial retreat, sea surface 

temperature monitoring, land use monitoring, vegetation distributions, deforestation, and forest 

fire extents, and, as such, thermal sensors have been deployed on several satellites since the 

1970’s (e.g. Nimbus 7 and NASA’s Heat Capacity Mapping Mission). The Landsat Earth 

Observation Satellite (Landsat) program distributes free publicly available TIR data collected 

since 1982. The Landsat program has had seven satellites in orbit; currently, Landsat 7 (launched 

in 1999) and Landsat 8 (launched in 2013) are collecting data from a near-polar, sun-

synchronous orbit, while Landsat 1-6 have been decommissioned (NASA 2011). Landsat 7 

experienced a scan line corrector failure in May 2003, producing data gaps across all images, 

thus making Landsat 8 a more reliable source for thermal imagery (USGS 2013).  

Landsat 8 TIR provides synoptic digital numbers that represent reflected solar radiation. 

These digital numbers can then be converted into degrees of temperature at a resolution suitable 

for predicting water temperatures for large to mid-size rivers (e.g. Handcock et al. 2006). To 

date, the accuracy of Landsat 8 TIR has not been tested for use in smaller streams suited for 

juvenile salmonid rearing. Since juvenile salmonids use a wide range of stream systems in 
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Alaska, further assessment is necessary to quantify the degree of spatial accuracy and the 

influence of surrounding habitat and temporal environmental processes on Landsat-derived 

stream temperatures.  

Landsat Thermal Infrared Imagery  

 Landsat 8 TIR imagery provides radiometric surface temperature information at a 

landscape scale by capturing emitted thermal-infrared radiation. Over water, TIR provides values 

of reflected solar energy from the top 100 micrometers of the water column (Togerson et al. 

2001). Radiant water temperature (emitted radiation) measurements are representative of kinetic 

water temperature (in-situ) under well-mixed water conditions typical of lotic systems (Togersen 

et al. 2001). Kinetic temperature is biologically important for salmon physiology and a driver of 

habitat productivity (Handcock et al. 2006).  

 Landsat 8 TIR imagery is publicly accessible through the U.S. Geological Survey 

Explorer. Images can be downloaded from the database, which is automatically updated within 

24-hours of image collection. Once downloaded, images must be calibrated using quantized-

scaled Digital Numbers (DN) representing the multispectral image data (Appendix 1; USGS 

2013). Images must also be corrected for atmospheric transmission radiance using an 

atmospheric correction algorithm (Appendix 2; USGS 2013; Handcock et al. 2012; Simon et al. 

2014).  

 Landsat 8 is equipped with 11 spectral bands. Each band represents a different portion of 

the electromagnetic spectrum. Bands 1-9, known as the Operational Land Imager, are spectral 

bands commonly used in the earth sciences. The remaining bands, 10 and 11, collect TIR data 

using the Thermal InfraRed Sensor (USGS 2013).  
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 The thermal bands 10 and 11 acquire TIR imagery at 100-meter resolution and resample 

to 30-meter pixels (USGS 2013). Pixels are resampled using cubic convolution interpolation, a 

method used to determine values in an image through a weighted average of the 16 closest pixels 

to the input coordinates (Keys 1981). Spatial resolution of images acquired by the Landsat 8 TIR 

bands is expressed in meters. 30-meter resolution refers to one temperature value covering an 

area of 30 meters by 30 meters and displayed as a unique pixel in raster image (USGS 2013). 

Band 10 was used in this study to derive stream surface temperature as Band 11 is significantly 

more contaminated by stray light than Band 10 (USGS 2013).  

Handcock et al. (2006) tested the accuracy and uncertainty of several TIR products, 

including Landsat 7 TIR, on inland streams in the Pacific Northwest with a range of stream 

wetted widths (10–500 m) and TIR pixel sizes (5–1000 m). Stream sizes were grouped into three 

classes and TIR was compared to in-situ temperatures. The three stream width size classes were 

tested with 30m pixel resolution from the Landsat TIR image. The size classes were: three or 

more pixels across a stream, one to three pixels across a stream, and less than one full pixel 

across a stream. The authors found that if more than three pixels spanned the wetted width of a 

given stream (width ≥ 90m), the TIR temperature overestimated the in-situ temperature on 

average by 1.2 °C. If one to three pixels spanned the wetted width, influence from riparian and 

terrestrial ground cover increased the overestimation of TIR temperatures by 2.2 °C on average. 

In the last size class, a fraction of a pixel across the stream, TIR temperatures overestimated by 

7.6 °C on average. Handcock et al. (2006) found that overestimation of the TIR temperatures is 

due to ground cover influence, thermal stratification between the stream surface and the location 

of the in-situ temperature measurements deeper in the water column, and that reliable satellite 

TIR measurement of stream temperatures is limited to large rivers with greater discharge. 



6 

 

Wawrzyniak et al. (2012) looked at the longitudinal and temporal variations in thermal 

patterns of the lower Rhône River in France using Landsat 8 TIR. Citing Handcock et al. (2006), 

these authors only used stream reaches with one or more pixels spanning the wetted width. A 

water extraction technique was used to remove pixels containing terrestrial ground cover. The 

average accuracy of Landsat 8 TIR was found to be ±1.1 °C for reaches with more than 3 pixels 

across and ±1.4 °C for reaches with one to 3 pixels across. Wawrzyniak et al. (2012) concluded 

that TIR accuracy is more influenced by terrestrial surfaces than number of pixels spanning a 

stream reach.  

Simon et. al (2014) characterized the thermodynamics of waterbodies, specifically of 

irregularly-shaped inland reservoirs using Landsat 8 TIR. The authors proposed that images must 

be corrected, mainly for atmospheric effects, to be useable, and the study’s objective was to 

validate the standard correction algorithm for Landsat 8 TIR. Two freshwater reservoirs in 

central France were selected as study sites. Results showed a significant difference between 

corrected and uncorrected image data and recommended atmospheric corrections be made to 

Landsat 8 TIR images.  

Scope of Study  

 Previous studies have assessed the overall accuracy of Landsat TIR and found that larger 

streams yield more accurate stream temperatures (Handcock et al. 2006; Wawrzyniak et al. 

2012). However, most juvenile salmonids occupy relatively shallow, low-velocity areas in small 

streams averaging 1 m deep and with average velocity of 40 cm/s during rearing (Bjornn and 

Reiser 1991). These streams, often 1st to 5th order systems (stream order is a measure of the 

relative size of streams, smallest tributaries are referred to as first-order streams), have wetted 

widths that occupy just a fraction of one Landsat 8 TIR pixel (Vannote et al. 1980). This study 
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quantifies the accuracy of Landsat 8 TIR on stream systems smaller than the 30 m Landsat pixel 

by assessing the ability of Landsat to derive stream temperature in a small salmonid rearing 

stream in Southcentral Alaska. In contrast to Handcock et al. (2006) and Wawrzuniak et al. 

(2012), this study has also analyzed the influence of environmental variables on TIR-derived 

stream temperature.   

 

METHODS 

This study was framed as a ground-truth exercise - collecting in-situ temperatures from 

an Alaskan watershed and comparing the data to TIR-derived temperatures sampled at the same 

time and location. The watershed was chosen based on its accessibility, diversity of river 

morphology, presence of common Alaskan vegetation, and use by juvenile salmonids, including 

Chinook salmon. Due to the stream only occupying a small portion of a Landsat 30 m pixel, 

percent of water within the pixel, the remaining ground cover (everything not-water), and stream 

morphology were surveyed in ten 30-meter by 30-meter field sites. In addition, stream discharge 

and air temperature data were collected from local sensors maintained by the United States 

Geologic Survey (USGS) and the Natural Resource Conservation Service (NRCS). Following 

the field exercise, the accuracy of TIR-derived temperatures were evaluated and quantified based 

on environmental variables collected in the field during the same time scale.   

Study Area 

The Anchor River watershed is located on the southern portion of the Kenai Peninsula; its 

headwaters are in the Caribou hills to the east of its mouth in the lower Cook Inlet (Figure 1). 

The total area of the watershed is 583 km2 including 185 km of streams that are classed as 
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anadromous fish spawning habitat by Alaska Department of Fish and Game and used by four 

species of Pacific salmon (ADF&G 2015). The watershed is classified as a 5th-order peat 

wetland-supported system typical of a non-glacial watershed. Maximum stream discharge occurs 

from August to November with low flows occurring during June and July (Rinella et al. 2008).   

 In-situ stream temperatures were collected at ten field sites within the Anchor River 

watershed, with 3 on the South Fork Anchor River, 5 on the North Fork Anchor River, and 2 on 

the Chakok River, a North Fork tributary (Figure 1). To avoid thermal input from potential heat 

sinks, the field sites were chosen at least 30 meters from bridges, roads, or buildings. Sites were 

selected to represent habitat types, gradients, and wetted widths typical of salmon-rearing 

systems. No sites were chosen on the main stem Anchor River to avoid tidal influence. Since 

much of the Anchor River watershed is privately owned, site selections were also constrained to 

locations with public access. One site on private land was made available by a local contact.  

Temperature Collection  

In-situ Data 

In-situ steam temperature data were collected from 5 May 2015, through 1 November 

2015, to coincide with Landsat TIR data collection and historical Chinook salmon incubation, 

emergence, rearing, and spawning periods (ADF&G 2013). Data were collected using HOBO 

TidbiT v2 Water Temperature Data Loggers set to collect stream temperature in degrees Celsius 

at bi-hourly intervals (Hoboware 2014.). Loggers were mounted 5 cm from the streambed on 

embedded rebar and roughly mid-way between the thalwag and wetted edge in each of the ten 

field sites. Data loggers were deployed, calibrated, and checked monthly for accuracy using 

methods outlined by Mauger et al. (2014).  



9 

 

Landsat Thermal Imagery  

Landsat 8 overflew the study area 11 times during the sampling period. TIR (band 10) 

images were selected for 6 cloud-free dates to avoid atmospheric influence (USGS 2015). Once 

downloaded, images were calibrated using quantized-scaled Digital Numbers (DN) representing 

the multispectral image data (Appendix 1; USGS 2013). Images were also corrected for 

atmospheric transmission radiance using the appropriate atmospheric correction algorithm (for 

details see Appendix 2; USGS 2013; Handcock et al. 2012; Simon et al. 2014). Temperature was 

converted from Kelvin to Celsius before analysis for consistency with in-situ sensor temperature 

output. At least one Landsat TIR image was used from each month during the field study (May – 

September) anticipating seasonal trends in both stream discharge and air temperature. 

Field Site Delineations  

All 10 field sites were characterized based upon a suite of stream and riparian attributes. 

Each field site was treated as a “stream reach” typical of fisheries habitat surveys. Environmental 

data were collected on-site except for stream discharge and air temperature data, which were 

collected using USGS stream gage and NRCS Snotel databases respectively (Table 1, Table 2).  

Rosgen Stream Classification System 

Rosgen (1996) described a stream classification system for riverine ecosystems, 

commonly referred to as the "Rosgen Stream Classification System." This system is used 

throughout the primary literature and has been adopted by the Environmental Protection Agency 

(EPA) and many other federal and state agencies for watershed management. It is considered the 

standard for river morphology surveys and assessment. The System is broken down into 3 levels 

(I, II, and III). The Level I System is the most general, and is based on stream characteristics 
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resulting from width-to-depth ratio, sinuosity, gradient, deposition, entrenchment and, channel 

pattern; stream types are classified from A to G based on these characteristics.  

The Rosgen Stream Classification - Level I System was used to define the stream type at 

each in-situ sampling site. Based on its size and watershed attributes, the Anchor River sites 

were expected to be Types B, C, and E. Type B sites have a moderately steep channel slope, 

moderately entrenched, have a cross-section width/depth ratio, low sinuosity, and pool-riffle 

dominated bed morphology. Type C sites feature a well-developed floodplain, moderate channel 

slope, slightly entrenched with sequencing riffles and pools, moderately sinuous, and 

characteristic "point bars" within the active channel. Type E sites have very low elevational 

relief, are slightly entrenched, very low channel width/depth ratios, very high sinuosity, and high 

number of pools (Rosgen 1996; Appendix 3). 

Ground Cover 

Ground cover (everything not water in a 30m x 30m pixel), including terrestrial and 

riparian vegetation, exposed substrate, and debris, was characterized at all 10 of the field sites. 

Ground cover was classified into 3 categories - Light, Medium, and Dark - based on thermal 

output following Handcock et al. (2012). Within each category, vegetation was classified to sub-

categories using Boggs Indices (Boggs et al. 2014). Boggs Indices are ground cover descriptions 

specific to Alaska and aerial imagery analysis (Viereck et al. 1992) using variations of the 

Alaska Vegetation Classification levels III and IV (Boggs et al. 2014). 

Percent Water Class 

 The percent water by area within the 30m pixel was calculated for each field site, using a 

categorical variable called Percent Water Class (PWC). Percent Water Class took on one of four 
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values corresponding to the percent of pixel that was water (1: 0-25%; 2: 26-50%; 3: 51-75%; 4: 

76-100%).  

Gage Height  

Stream stage data were collected from the USGS stream gage site located on the South 

Fork Anchor River (Gage Number: 15239900; Latitude 59.4450, Longitude -151.4511; Figure 1; 

USGS 2016). Stream stage data are collected every 15 minutes and are publicly available (USGS 

2016). Stream stage, measured in feet above the river bed, is used to describe discharge in this 

study (data were not converted into cubic feet per second using a rating curve). Data were 

obtained for the entire field season at 15 minute intervals to account for trends, fluctuations and 

anomalies. Stream stage data were assessed for each Landsat 8 TIR image date as follows: 

Gage Daily Average (Gagedaily)- The average stream stage from the 24-hour period 

preceding a given Landsat TIR pass-over date. 

Gage Weekly Average (Gageweekly)- The average stream stage from the 7 days 

preceding the Landsat TIR image date.  

Gage Difference (Gagediff)-  The difference between Gagedaily and Gageweekly. This 

provides context for fluctuations or stability within the water table in the week preceding 

the Landsat TIR image. A negative Gagediff suggests a declining water level, a positive 

Gagediff suggests a rising water level, and a Gagediff close to 0 implies stability.  

Air Temperature  

Air temperature data were obtained from the NRCS Snotel Site at the Anchor River 

Divide (Site Number: 1062; Latitude 59. 8597, Longitude -151. 3111; Figure 1; NRCS 2015). 
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Air temperature, in degrees Celsius, is collected every hour and is publicly available (NRCS 

2016). For the purposes of this study, air temperature data were obtained for the entire field 

season. Air temperature data were assessed for each Landsat 8 TIR image date as follows: 

Air Daily Average (Airdaily)- The average air temperature from the 24-hour period 

preceding a given Landsat TIR pass-over date. 

Air Weekly Average (Airweekly)- The average air temperature from the 7 days preceding 

the Landsat TIR image date.  

Air Difference (Airdiff)-  The difference between Airdaily and Airweekly. This provides 

context for fluctuations or stability in air temperature in the week preceding the Landsat 

TIR image date. A negative Airdiff suggests a declining air temperature, a positive Airdiff 

suggests a rising air temperature, and an Airdiff close to 0 implies stability.  

Temperature and Stream Delineation Database Construction 

 A Geographical Information System (GIS) database was constructed in ArcGIS software 

(ESRI 2014) to allow the in-situ temperature, site characteristic, and Landsat information to be 

joined based on spatiotemporal concurrence. The WGS84 horizontal datum and the Alaska State 

plane projection were used to georeference the location information for each dataset. Landsat 8 

TIR scenes for each date were imported to the GIS and each pixel converted to a polygon 

corresponding to the Landsat image. This allowed for stream delineations to be made within the 

same boundaries as the 10 field sites.  

The position of each in-situ stream temperature sensor was collected with a survey-grade 

(accuracy: 1–100 cm) GPS unit (Trimble Geo7X). Location data were post-processed using the 

GPS Pathfinder Office Software (GPS Pathfinder Office 2014). All in-situ temperature data were 
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downloaded and checked for quality using Hoboware software (Hoboware 2014) before being 

added to the GIS as a single x, y point with temperature data spanning the entire study period. 

Each in-situ point fell into its corresponding Landsat polygon and was thereby joined to the 

Landsat 8 TIR temperature value, thus creating a database with both temperature values and 

stream delineation information. Each field site was assigned a Site Name (based on its location; 

Figure 1), Rosgen Stream Classification, Ground Cover Class, Percent Ground Cover Class, 

Percent Water Class, Air Temperature, and Gage Height values (Table 1; Table 2). 

Data Analysis  

Landsat Thermal Offset 

 The accuracy of Landsat 8 TIR is measured using the Landsat Thermal Offset (LTO), the 

difference between the TIR image-derived temperature (Ti) and the in-situ temperature (Tl): 

LTO= Ti - Tl  

An LTO of 0℃ means Landsat TIR and in-situ temperatures are equal. A positive LTO 

results when Landsat TIR has a higher temperature than the in-situ measurement. A negative 

LTO results when the Landsat TIR was lower than the in-situ temperature.  

Generalized Additive Model 

Initial data explorations revealed non-linear relationships between some of the 

environmental explanatory variables and LTO. As such, a Generalized Additive Model (GAM) 

was employed to examine the relationship between environmental variables and LTO associated 

with each in-situ site (6 dates, 10 sites, n = 60). GAMs are an extension of Generalized Linear 

Models (GLMs), which use a smoothing function to describe the relationship between predictor 
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variables and response data, like those found in weighted regressions (Bio et al. 1998). Their 

flexibility in modeling potentially nonlinear relationships between explanatory variables and 

response variables makes GAMs attractive for exploratory analyses for which a priori 

understanding about the associations between covariates and modeled data is limited. GAMs 

were fit to explore relationships between site-specific environmental covariates and LTO (Wood 

2004). All models were run using R, a language and environment for statistical computing and 

graphics (R Core Team 2015).  In model formulation notation, the global model tested was: 

LTO ~ Rosclass + Water + Light + f(Gagedaily, k=4) + Medium + Dark + f(Gagediff, 

k=4) + f(Airdaily, k=4) + f(Airdiff, k=4) +f(Airweekly, k=4) + f(Gageweekly, k=4) 

The f(variable, k=4) terms indicate a given explanatory variable was modeled as a cubic 

spline with four knots.  GAM-produced LTO predications were generated using the {mgcv} 

package (Wood 2001). Since temporal data can have non-linear complexity, smoothing functions 

were used on temporal data sets (stream stage and air temperature) and were run as cubic splines 

with four knots. All other covariates entered GAM models in level form (Wood 2004; Appendix 

4).  

Model Fitting and Evaluation  

To account for model uncertainty in assessing the relationship between stream and 

riparian explanatory variables and LTO, Akaike information criteria corrected for small sample 

sizes (AICc) based multi-model inference was used for every combination of explanatory 

environmental variables contained in the global model (Burnham and Anderson 2002). Model 

selection was based upon the complete set of possible models, treating all covariates on level 
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form or as a cubic spline function (with four knots), and without any interaction terms (Symonds 

and Moussalli 2010).  

 

RESULTS 

Model Selection 

 The global model containing all environmental covariates had high goodness of fit (R2
adj 

= 0.873). AICc- based model selection identified the two top models had comparable support 

(Table 3). The models with the lowest AICc scores and root mean squared errors (RMSE) 

included both Rosgen Stream Classification (Rosclass) and Gage Difference (Gagediff) 

(AICc=253.3, RMSE = 1.76 ͦC; Table 2, Table 3; Figure 2). The next best model had only a 

marginally higher AICc score and a slightly lower RMSE and included Rosclass, Airdaily, and 

Gagediff (AICc = 253.6, RMSE = 1.72 ͦC; Table 2, Table 3; Figure 3).  

Explanatory Variable Support 

 The relative importance (RI) of the independent variables were assessed using AICc 

weights. Rosclass (RI = 93%) and Gagediff (RI = 91%) were the two most important variables.  

Airdaily (RI = 52%), Air Difference (Airdiff; RI = 36%), Gage Daily (Gagedaily; RI = 39%), 

dark ground cover (Dark; RI = 30%), medium ground cover (Medium; RI = 27%), light ground 

cover (Light; RI = 20%), and percent water (Water; RI = 24%) had somewhat lower relative 

variable importance support when comparing across all models. 

 Corroborating relative importance (RI), the top model (LTO ~ Rosclass + f(Gagediff)) 

indicated Rosclass was statistically significant (p= 0.015) as was Gagediff (p < 0.001) based 
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upon traditional frequentist hypothesis testing. The second top model (LTO ~ Rosclass + 

f(Gagediff) + f(Airdaily)) found Rosclass (p=0.014) and Gagediff (p < 0.001) to be statistically 

significant.  Airdaily (p=0.25) was not statistically significant.  

 Predictive Performance  

 The AICc top model (LTO ~ Rosclass + f(Gagediff)) predications had a mean absolute 

error (MAE) of 1.38 with 88.6% deviance explained (Figure 4). The second best AICc supported 

model (LTO ~ Rosclass + f(Gagediff) + f(Airdaily)) predications had a MAE of 1.36 with 89.1% 

deviance explained (Figure 5). The top model containing Rosclass and Gagediff, when assessed 

by date (Figure 6), displayed a tendency to over-predict stream temperatures (Landsat measured 

warmer than in-situ), with exception of September 12 2015 (9/12/2015), when temperatures were 

under-predicted (in-situ measured warmer than Landsat). The widest margin of errors was 

measured on May 30 2015 (5/30/15), producing both the min, -5.69℃, and the max, 3.46℃, 

residuals. When assessed by field site (Figure 7), LTO residuals showed much more variability, 

with some sites always over-predicating and some always under-predicting. Field sites that were 

a Rosclass E, CR-1 and CR-2, experienced the highest and lowest mean residuals, indicating 

they have the least accurate LTO. The minimum residual occurred at field site NF-3. The site 

with the most accurate LTO was SF-3, a Rosclass B.  

 The second-best model had similar residual patterns in fit performance. Residuals, when 

assessed by date (Figure 8), showed over-predicting LTO. The widest margins of error occurred 

on May 30 2015 (5/30/2015) and July 1 2015 (7/1/2015; with 5/30/2015 producing the largest 

negative residual, -5.99℃). The largest positive residual occurred on August 11 2015 (8/11/2015; 

3.5℃). When assessed by site (Figure 9), residuals revealed that the model tended to over-

predict LTO at most sites, apart from NF-4 and NF-5.  
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Effects of Covariates on LTO 

 To provide further insight into the influence of specific covariates on LTO performance, 

GAM models with single covariates were fit based upon the top AICc supported explanatory 

variables.  A model run with LTO ~ Rosclass only (R2
adj = 0.0391, RMSE= 5.01℃) performed 

poorly, with MAE for model predictions of 3.9℃ with 7.17% deviance explained (Figure 10).  

Conversely, a model run with LTO ~ f(Gagediff) only (R2
adj = 0.805, RMSE= 2.24℃ ) performed 

relatively strongly, with MAE for model predictions of 1.70℃ and 81.4% deviance explained 

(Figure 11).   

 Examining the top two AICc supported covariates (Rosclass, Gagediff), Rosclass B and C 

type field sites have a lower mean LTO than E type sites. Calculating means for each class, B 

type sites had a mean LTO of 4.44℃, C type streams had a mean LTO of 3.06℃, and E type 

streams had a mean LTO of 7.07℃. This would imply C type sites had the most accurate raw 

LTO, followed by B type streams. E type streams had the highest mean LTO, indicating lower 

accuracy (Figure 12).  

 Gagediff had a wide range of variability when examined with LTO through the duration 

of the field season. As expected, LTO was lowest when Gagediff was closest to 0 ft., meaning no 

increase or decrease in stream discharge in the week preceding the Landsat image collection. 

LTO decreased in accuracy most significantly during the June 15 2015 (6/15/2015) sampling 

event, when stream discharge had drastically dropped in the preceding week (Gagediff = 0.28 

ft.). This outlier yielded the most inaccurate Landsat TIR temperature (largest LTO). Mean LTO 

was highest on June 15 2015 (6/15/2015; 13.92℃) when Gagediff was negative (-0.28 ft.), and 
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the lowest mean LTO was July 1 2015 (7/1/2015; -0.48 ℃) when Gagediff was very close to 0 ft. 

(0.005 ft.; Figure 13).  

  Mean accuracy by Gagediff offers discharge ranges and their corresponding mean LTO. 

The smallest Gagediff metric ±0.1 ft., produced a mean LTO of 0.8 °C (n=20), the next range 

±0.2 ft. produced a mean LTO of 2.38 °C (n=40), and a range of ±0.5 ft. produced the full mean 

of 4.56 °C (n=60; Figure 14).  

 Results suggest models with stream gage data performed relatively strongly in explaining 

LTO; however, air temperature data near stream temperature prediction sites may be more 

readily available. To investigate the performance of air temperature data in isolation of stream 

gage data, models were run without Gagediff to assess the use of Airdaily as a covariate. A GAM 

model run with LTO ~ Rosclass + f(Airdaily) (R2
adj = 0.858, RMSE= 1.87℃) preformed quite 

well, with RMSE only slightly higher than the two top models (top model: LTO ~ Rosclass + 

f(Gagediff), second top model: LTO ~ Rosclass + f(Gagediff) + f(Airdaily)). A GAM model run 

with LTO ~ f(Airdaily) (R2
adj = 0.788, RMSE= 2.35℃), performed significantly less well than 

both top models or the model run with LTO ~ Rosclass + f(Airdaily).  

Possible Field Errors 

 In-situ temperature loggers need to be wetted and free of debris to provide accurate 

stream temperature data. During the field study, loggers were periodically checked; however, it 

is possible that debris such as salmon carcasses or woody debris may have contacted sensors, or 

that extreme changing water levels may have rendered some sensors dry for short periods of 

time. This would potentially bias in-situ readings and contribute to perceived LTO error if such 

sensor anomalies occurred during a Landsat pass.  That notwithstanding, such errors were 
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unlikely during this study; during a total of 9 field visits to all sites, no equipment errors were 

observed apart from the July 26 2015 (7/26/2015) date when a salmon carcass was found above 

the in-situ sensor hung on the embedded rebar.  

 

DISCUSSION 

 The goal of this study was to identify which stream environmental variables most 

strongly influence the accuracy of Landsat 8 TIR-derived stream temperature and to determine 

whether GAM modeling framework could correct Landsat 8 TIR into temperature data 

representative of in-situ stream temperatures in smaller order systems. Model selection analysis 

identified Rosclass and Gagediff as the top covariates that influence Landsat 8 TIR-derived 

stream temperatures, with weaker support for Airdaily as an influential explanatory covariate. 

The AICc top model appears to suggest the accuracy of TIR-derived stream temperature data are 

driven by morphological (Rosclass) and hydrological (Gagediff) processes.  Results indicated 

that the relationship between Landsat 8 TIR-derived stream temperature and in-situ measured 

temperature may depend on flow conditions in targeted stream reaches.  

 One plausible mechanism expounding the relationship between stream flow conditions 

and LTO is thermal stratification, which can lead TIR based information at the surface of a 

waterbody to not accurately reflect temperature conditions in the remainder of the water column.  

Other work on remotely sensed temperature products have implicated thermal stratification as 

decreasing the accuracy of TIR-derived stream temperatures (Torgersen et al. 2001; Handcock et 

al. 2006). Thermal stratification can occur on a micro-level, causing a thin formation of warm 

surface water created by air temperature anomalies; this is known as the thermal boundary effect. 
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In most rivers, the thermal boundary effect is limited to pools, off-channel habitat, and areas with 

extremely low gradient, but if turbulent stream mixing is absent due to low discharge, a thermal 

boundary can form in normally lotic stream reaches if air temperature abnormalities occur 

concurrently (Torgersen et al. 2001).   

During the study period in this effort, peak air temperature (28.8℃) occurred on June 16 

2015, one day after Landsat 8 TIR was collected from the same location (air temperature reached 

25.8℃ on this date). This high temperature is uncharacteristic for a subarctic climate such as the 

Anchor River basin, which has a mean historic air temperature of 14.33℃ for June 15 (NWS 

2016). A closer look at the week preceding the June 15 2015 Landsat 8 TIR collection, a rapid 

decline in stream discharge (Gagediff= -0.28 ft.) and a rapid increase in air temperature occurred 

concurrently (Figure 15). These factors may have caused a thermal boundary effect, decreasing 

vertical mixing. The mean LTO for June 15 2015 was the highest of any day (13.92 ℃), the same 

day included the highest overall LTO for the whole study (18.55 ℃).  

When air temperature was consistent with regional norms and stream discharge was 

stable, LTO was always smaller. Just 15 days following the June 15 2015 TIR collection, on July 

1 2015, air temperature was back within average range (5-20 ℃) and stream discharge was 

extremely stable (Gagediff = 0.005 ft.; NWS 2016; Figure 16). The LTO for this sample event 

was the lowest for the entire field season (0.64℃) and produced the lowest overall LTO for the 

whole study (-0.13 ℃).  

Stream discharge fluctuations followed seasonal trends and produced a parabolic 

distribution over the study period. When stream discharge increased significantly, such as on 

August 18 2015 (Gagediff = 0.37 ft.), Landsat TIR accuracy decreased (mean LTO = 3.87℃). 
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Increased stream discharge can increase vertical mixing; however, it can decrease overall 

accuracy by increasing wetted width, saturating vegetation and creating stratified off channel 

pools (Handcock et al. 2006). Temporal effects can all be linked to levels of discharge and 

display the influence of seasonal changes (Figure 17).  

Air temperature’s (Airdaily) influence appears to be exclusively relevant during heat 

anomalies. When all data associated with June 15 2015 are removed from the global model, the 

relative importance of Airdaily drops from 52% to 43%. Similarly, removing data associated 

with June 15 2015 leads to an increase in Gagediff relative variable importance from 91% to 

100%. Without this anomalous sample event, Rosclass enjoys similar AICc relative variable 

importance support (RI = 94%), underscoring the interactions between discharge and 

morphology and their effects on the temporal variability of LTO.  

The magnitude of discharge, coupled with the underlying stream morphology, can 

significantly affect vertical mixing (Arntzen et al. 2006). Channel morphology, as captured by 

Rosclass, largely dictates the speed and depth of discharge. Inference can be made from each 

Rosclass stream reach as to the degree of stratification and the mechanisms causing it. Rosclass 

E reaches are slow moving, highly sinuous, low gradient reaches with little turbidity. These 

reaches are more susceptible to atmospheric influences due to the low stream velocity. Rosclass 

B and C reaches have similarities in their channel morphology. B reaches are slightly more 

sinuous than C reaches; however, both reach types host riffles and have moderate entrenchment. 

The slight advantage of improved accuracy when predicting in-situ stream temperature in C type 

reaches may result from this habitat type’s wider wetted-width. B and C reaches often have input 

from smaller tributaries, thus increasing their discharge. E type reaches are often spring or 
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groundwater fed (Rosgen 1996). Mean LTO across all sites and dates reflects this notion; E type 

sites have higher overall LTO than B and C sites, which have similar levels of overall accuracy.  

Mulvihill et al. (2009) examined 18 models for bank-full discharge to drainage area 

relations using Rosclass as a stratification-predicting variable. The authors found that while it is 

difficult to quantify differences in discharge between B and C type reaches, E type reaches had 

lower mean discharge due to the smaller wetted width, smaller drainage area, and lower gradient 

and, thus, have significantly higher stratification rates.  

 Another plausible mechanism for discrepancies between TIR and in-situ stream 

temperatures is rates of surface heating and cooling. Solar radiation warms both land surfaces 

and water. Land surface absorbs much more solar radiation than water, which reflects most solar 

radiation back to the atmosphere, so land retains more heat and warms more quickly than water 

(Forman 2014). Hence, land and water heat and cool at different rates. Land temperature might 

change faster than water, for example, if it’s anomalously hot (such as on June 15 2015), the land 

may be warming rapidly, but because water has high thermal mass, it changes temperature more 

slowly and, thus, results in a bigger LTO. The same processes that drive stratification (i.e. 

temperature anomalies and discharge flux) also may cause water and land to heat and cool at 

different rates. This mechanism would vary depending on channel characteristics (explaining 

why Rosclass is so significant), and water velocity and flow volume (i.e. Gagediff; Torgersen 

2001). The implications of this reiterates the importance of understanding the relative 

temperature differences between land and water. 

Accuracy Assessment  
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 The accuracy of Landsat TIR derived stream temperature predictions varied depending 

on geomorphic (Rosclass) and hydrological (Gagediff) covariates. Without correcting for stream 

covariates through regression, the mean raw LTO across all field sites and dates was 4.56 °C 

(n=60), with a maximum LTO of 18.54 °C and a most negative offset of -5.67 °C. Using the 

EPA best practices margin of error of ± 0.5 °C as the gold standard of “point source” stream 

monitoring, 10% of all LTO fell within this range (McCullough 1999). Fifty-one percent of total 

raw LTO fell within the ± 4 °C range (a widely accepted TIR error range).  

 Regression modeling of LTO identified stream conditions that may lead to high accuracy 

in predicting in-situ stream temperature for smaller streams using Landsat TIR products (Figure 

18). The range with the lowest mean LTO, Rosclass B type field sites within the Gagediff range 

of ±0.1 ft., had a mean LTO of -0.22 °C (n=10), both Rosclass B and C type field sites within the 

Gagediff range of ±0.1 ft. had a mean LTO of -0.63 °C (n=16), Rosclass C type within the same 

Gagediff range had a mean LTO of -1.3 °C (n=6). 

A larger Gagediff range lowers the accuracy of mean LTO slightly, but increases the 

sample size. Rosclass C type field sites within the Gagediff range of ±0.2 ft. had a mean LTO of 

1.07 °C (n=12). Rosclass B type field sites within the Gagediff range of ±0.2 ft. had a mean LTO 

of 1.95 °C (n=20). Rosclass B and C type field sites within the Gagediff range of ±0.2 ft. had a 

mean LTO of 1.63 °C (n=32). 

These covariate ranges allow relative confidence in using raw TIR-derived stream 

temperatures if used during periods of stream discharge stability and at field sites with channel 

morphology consistent with Rosclass B or C type characteristics. The mean LTO of all Rosclass 

stream types (B, C, and E) within the Gagediff range of ±0.1 ft. was 0.8 °C (n=20); however, 

only Rosclass E type field sites within the Gagediff range of ±0.1 ft. had a mean LTO of 2.92 °C 
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(n=4). The high mean LTO of E type field sites under such ideal discharge circumstances 

underscores the importance of stream morphology and the power of the top model including both 

covariates.  

Comparison to Previous Studies  

 Much like the Handcock et al. (2006) study, these findings show that Landsat TIR 

appears to over-predict in-situ temperatures. However, model-produced predictions can correct 

for fluctuations in discharge, air temperature anomalies, and E type steam reaches, producing 

accurate in-situ stream temperature predictions for lower order streams. Handcock et al. (2006) 

found that field sites with a “fraction of a pixel across the stream” had a mean LTO of 7.6 °C. 

The authors proposed that high LTO is caused by thermal stratification between warm surface 

water and cooler water deeper in the stream where the loggers were located and is more 

prevalent in these smaller streams due to lower discharge.  

Thermal stratification is not common in well-mixed streams, such as the Anchor River, 

but it may occur during sunny, warm conditions or slow stream flows when solar heating of the 

surface layer is not compensated by vertical mixing (Wunderlich 1969). Handcock et al. (2006) 

used study regions in the inland Pacific Northwest, the “fraction of a pixel across the stream” 

sites came from the Green River in Washington state. The Green River has a dam-controlled 

water discharge and passes through largely urban areas. The decreased accuracy of Landsat TIR-

derived stream temperature could be a result of any one of these factors. In comparison, the 

Anchor River has no dam and no urban infrastructure. Dam-controlled stream systems are more 

prone to vertical stratification due to warming of upstream stagnant water in lakes and reservoirs 

(Baxter 1977). Urban infrastructure, such as adjacent roads and buildings, can influence TIR as 
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well by becoming thermal heat sinks. Thus, results from the Green River may not directly reflect 

dynamics in the Anchor River due to its absence of dams and urban infrastructure.   

Handcock et al. (2006) found high LTO variability in smaller streams ranging in size 

from 5 to 20 m across. In the same study, results found the minimum LTO was 0.2 °C and the 

maximum 22.2 °C (n=22); however, due to the absence of environmental data, no conclusion as 

to the cause of variability can be made besides the possibility of difference in geomorphology 

and hydrologic discharge.  The authors postulated the cause of such wide disagreement between 

Landsat TIR-derived stream temperature and in-situ temperatures in smaller stream systems as: 

1) radiometric error due to atmospheric uncertainty, 2) vertical stratification occurring, and 3) the 

influence and percent of stream bank material (ground cover).  

Reconstructing In-situ Temperatures Using Remotely-sensed TIR Products 

The narrow range in conditions over which raw Landsat 8 temperature agreed with in-

stream water temperatures suggests that without further correction to accommodate stream 

conditions, it is of limited value for predicting in-situ water temperatures in small order subarctic 

streams.  However, this thesis demonstrates that relatively simple GAM models can employ 

readily available environmental variables, such as Rosgen Stream Classification type, stream 

stage, and air temperature data, to accurately correct for LTO. A corrected Landsat temperature 

value (LSTC) can be calculated by subtracting the model-produced LTO predictions (LTOŷ) from 

the corresponding raw Landsat temperature value (LSTRaw) as: 

     LSTC = LSTRaw - LTOŷ 

Corrected Landsat temperatures were calculated for each site and date for the duration of 

the study period. The performance of the LSTc model (LTO ~ Rosclass + f(Gagediff) and LTO ~ 
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Rosclass + f(Airdaily)) was examined on a sub-basin scale by predicting temperatures for the 

North Fork Anchor River, South Fork Anchor River, and Chakok River basins for comparison 

with in-situ temperatures (Figures 19-24). This was also done for the whole Anchor River basin 

(Figure 25-26). Corrected Landsat temperatures across all sub-basins and watershed-wide, had 

mean absolute error (MAE) and root mean squared error (RMSE) between 1.1 °C and 1.93 °C 

(Table 5).  

Handcock et al. (2006) reported that uncorrected Landsat temperatures did not 

characterize actual stream temperatures for small streams. This thesis verifies this finding and 

outlines a modeling framework for predicting corrected Landsat temperatures that performs 

efficiently enough for landscape-scale stream temperature monitoring.  

Applications of Landsat-derived Temperature Information for Small Order Stream 

Ecology 

 Landsat 8 TIR can be a useful tool in assessing watershed-scale stream temperature 

heterogeneity amidst concurrent trends in salmonid size-at-age and abundance in remote 

watersheds in Alaska. While Landsat 8 TIR cannot provide absolute temperature, or offer fine-

scale thermal maps suitable for detecting cold water refugia or ground water influence, it can 

offer temperatures representative of temporal shifts in broad-scale trends. Recent studies (i.e. 

Schindler et al. 2015) have suggested that juvenile salmonids utilize larger portions of a 

watershed than previously thought (i.e. high use rearing areas change yearly), and that shifts in 

landscape-scale water temperature heterogeneity are representative of processes affecting 

juvenile salmonids’ life histories. Addressing such trends is useful for understanding the effects 

of climate change on freshwater-stage salmonids and predicting the trajectory of such trends.  



27 

 

Additionally, Landsat TIR is available from the Landsat 5, 6, and 7 satellites, offering the 

possibility of obtaining stream temperatures from 1982 on, with 16-day frequency across Alaska 

with an error range under 2℃. Alaska Department of Fish and Game’s Anadromous Waters 

Catalogue has salmonid size and age data along the same time scale, offering the possibility of 

viewing stream temperature heterogeneity and juvenile salmon size and age information over a 

35-year time-period (ADF&G 2015).  

Further Studies   

In this effort, analysis protocol and field design provided an opportunity to incorporate 

insight provided by Handcock et al. (2006), and addressed three primary proposed causes of 

inaccurate Landsat TIR-derived stream temperatures: 1) images were given an atmospheric 

correction, 2) vertical stratification was assessed using Rosclass and Gagediff, and 3) ground 

cover was classified and found to be an insignificant influence on LTO. Overall, efforts here 

were successful in improving insight about the margin of error of Landsat TIR-derived stream 

temperatures on the Anchor River watershed and improved understanding about the influence of 

in-stream and riparian habitat conditions on LTO in high latitude small stream systems. 

Ultimately, this study sought to investigate whether Landsat TIR derived predictions of in-situ 

stream temperature are useful for assessing relative temperature trends over large spatial and 

temporal scales.   

Thermal stratification fluctuates seasonally, with clear delineations between layers during 

the summer, narrower layers in winter, and a “turnover” in the spring and fall when temperature 

is uniform throughout the water column (Boehrer and Schultze 2008). Expanding this study to 

view the effects of these covariates on LTO year-round may increase understanding of these 

interactions. Conducting a “paired study”, where one in-situ logger sits on the stream bed and 
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one on the stream surface would clarify the effects of stratification and the seasonal trends in 

vertical mixing.  

Hydrologic models, such as the Soil, Water Assessment Tool (SWAT), exist that can 

quantify stratification and even predict it based on stream discharge and air temperature (Santhi 

et al. 2001; Mulvihill et al. 2009). Use of these models in unison with the methods described here 

may offer insight into field site and date selection, to further eliminate the influence of thermal 

stratification.  

To assess how rates of warming affect terrestrial areas versus wetted areas would provide 

understanding on how rates of warming and cooling affect LTO. To test this, a temperature 

sensor could be placed on dry land adjacent to an in-situ logger to test rates of warming and 

cooling of land vs. water over different stream reaches with varying morphology.   

Applying these methods to other, similar Alaskan watersheds will validate this study as a 

useful fisheries management tool. As it currently sits, these methods can only speak to relative 

trends in the Anchor River watershed. Validating these methods on additional systems would 

make progress toward filling the stream temperature data gap and allow fisheries managers to 

draw useful correlations between stream temperature flux and juvenile salmonid populations in 

remote watersheds.   

 

CONCLUSION 

 This thesis investigated the environmental variables that influence the accuracy of 

Landsat 8 TIR-derived stream temperatures in the Anchor River basin. Multimodel based 

inference supported Rosgen Stream Classification (Rosclass) and 7 day trends in stream 
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discharge (Gagediff) as being strongly associated with Landsat 8 thermal offset (LTO). Stability 

in stream discharge (Gagediff = ±0.2 ft.) in the week preceding a Landsat TIR data collection 

event, coupled with stream morphology characteristics consistent with Rosclass B and C reaches, 

were associated with the highest accuracy of Landsat TIR-derived stream temperatures. Across 

all sites and dates, GAM regressions accurately translated raw Landsat TIR data into 

temperatures reflecting in-situ water temperatures in small order streams. While regression 

analyses supported Rosclass and Gagediff habitat covariates as being influential in explaining 

LTO, the underlying mechanisms that these variables reflect remains an open question.  This 

study hypothesizes that these variables may provide indication of conditions that lead to stream 

stratification, or alternatively, may be reflecting other environmental processes leading to 

stronger temperature differentials between temperature in the stream and that on the surrounding 

riparian land.  Future studies exploring the degree of stratification associated with in-situ stream 

temperatures and coupled riparian land- and water-based in-situ validation efforts may be useful 

for further clarifying conditions that lead to accurate Landsat TIR-based stream temperature 

predictions and improve development of regression-based correction models to reduce LTO.  

Finally, continued validation efforts in other high latitude watersheds over longer time periods 

will be important for testing the robustness of methods to use Landsat TIR-based stream 

temperature predictions, progressing towards a goal of providing a broad-scale tool for fisheries 

and watershed managers to assess the degree of, and potential impacts from, climate change on 

Pacific salmon resources in Alaska. 
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TABLES 

Table 1. Habitat delineations from the ten 30 m × 30 m in-situ data collection field sites. Light, 

Medium and Dark refer to ground cover classifications combining vegetation of similar thermal 

output. Water indicates the percent riverine water within the site. Boggs refers to the dominate 

vegetation class as outlined by Boggs Indices. PWC is Percent Water Class, which represents the 

range of percentage of water within the pixel. Rosclass refers to the Rosgen Stream 

Classification System, a method of classifying stream morphology based on width-to-depth ratio, 

sinuosity, gradient, deposition, entrenchment and channel pattern. Three Rosgen Stream 

Classifications were used (B, C, and E). Type B sites have a moderately steep channel slope, 

moderately entrenched, have a cross-section width/depth ratio, low sinuosity, and pool-riffle 

dominated bed morphology. Type C sites feature a well-developed floodplain, moderate channel 

slope, slightly entrenched with sequencing riffles and pools, moderately sinuous and 

characteristic "point bars" within the active channel. Type E sites have very low elevational 

relief, are slightly entrenched, very low channel width/depth ratios, very high sinuosity and high 

number of pools.  

Field Site % Light % Medium % Dark % Water Boggs Indices  PWC Rosclass 

NF-1 44.69 0.00 0.00 55.31 Black spruce-

deciduous canopy 

3 C 

NF-2 0.00 58.83 0.00 41.17 Black spruce-

deciduous canopy 

2 B 

NF-3 0.00 27.14 37.53 35.33 Black spruce-

deciduous canopy 

2 B 

NF-4 0.00 0.00 91.39 8.61 Black spruce-

deciduous canopy 

1 B 

NF-5 0.00 0.00 80.61 19.39 Deciduous forest 

with low scrub 

1 B 

CR-1 0.00 72.86 0.00 27.14 Herbaceous 2 E 

CR-2 0.00 87.22 0.00 12.78 Herbaceous 1 E 

SF-1 0.00 25.55 2.60 71.85 Deciduous forest 3 C 

SF-2 0.00 0.00 0.00 100.00 Deciduous forest 4 C 

SF-3 36.64 2.00 0.00 61.36 Deciduous forest and 

herbaceous 

3 B 
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Table 2. Stream discharge and air temperature data from the United States Geologic Survey 

(USGS) stream gage site located on the South Fork Anchor River (Gage Number: 15239900; 

Latitude 59.4450, Longitude -151.4511) and the Natural Resource Conservation Service (NRCS) 

Snotel Site at the Anchor River Divide (Site Number: 1062; Latitude 59. 8597, Longitude -151. 

3111) from each Landsat TIR data collection event. Gagedaily is the daily average gage height 

(ft.), and Gageweekly is the average gage height (ft.) from the seven days preceding the Landsat 

TIR image. Gagediff is the difference between Gagedaily and Gageweekly. Airdaily is daily 

average air temperature (ºC). Airweekly is the average air temperature (ºC) from the seven days 

preceding the Landsat TIR pass over. Airdiff is the difference between Airdaily and Airweekly.  

Date 

(mm/dd/yyyy) 

Gagedaily 

(ft.) 

Gageweekly 

(ft.) 

Gagediff 

(ft.) 

Airdaily 

(°C) 

Airweekly 

(°C) 

Airdiff 

(°C) 

5/30/2015 1.01 1.17 -0.16 15.24 6.93 8.31 

6/15/2015 0.94 1.22 -0.28 19.80 8.90 10.90 

7/1/2015 0.73 0.73 0.01 8.53 10.89 -2.36 

8/11/2015 0.59 0.69 -0.10 10.85 14.11 -3.26 

8/18/2015 0.95 0.58 0.37 13.20 10.76 2.44 

9/12/2015 0.98 0.96 0.03 6.09 7.83 -1.74 
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Table 3. Summary of the GAM fit as ranked by the AICc 

  
 

AICc Variable Importance  RI N 

Containing 

Models 

 

Rosclass 0.93 109 

Gagediff* 0.91 120 

Airdaily* 0.52 72 

Gagedaily* 0.39 63 

Airdiff* 0.36 61 

Dark 0.3 62 

Medium 0.27 66 

Water 0.24 57 

Light 0.24 52 

AICc Top 10 models DF AICc ∆AICc AICc 

Weight 

adj. R2 

LTO~Rosclass+ f(Gagediff) 6.77 253.33 0 0.07 0.876 

LTO~Rosclass+ f(Gagediff)+f(Airdaily) 7.83 253.64 0.3 0.06 0.879 

LTO~Dark + Rosclass + f(Gagediff) 7.77 254.91 1.58 0.03 0.876  

 

LTO~ 

f(Airdaily)+f(Gagedaily)+Rosclass+f(Airdif

f) 

8.61 255.19 1.85 0.03 0.878 

 

LTO~ f(Airdaily)+ Dark + Rosclass + 

f(Gagediff) 

8.83 255.28 1.95 0.03 0.879  

 

LTO~f(Gagedaily)+Rosclass+ f(Gagediff) 7.74 255.44 2.10 0.03 0.878 

 

LTO~Medium+ Rosclass + f(Gagediff) 7.76 255.44 2.11 0.03 0.875 

 

LTO~ Rosclass + f(Gagediff)+Water 7.76 255.47 2.13 0.03 0.875 

 

LTO~ f(Gagedaily)+Rosclass+ f(Airdiff)+ 

f(Gagediff) 

8.81 255.53 2.20 0.02 0.878  

 

LTO~ f(Airdaily) + 

f(Gagedaily)+Rosclass+ f(Gagediff) 

8.83 255.58 2.24 0.02 0.878  

 
* f(Gagediff) and f(Airdaily) indicate covariates were modeled as cubic splines with 4 knots; all other covariates entered GAM models in level 
form. 
** Assumes asymptotically normally distributed coefficient estimates  
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Table 4. Model formula and variable terms for the top two models.  

  

Model  Coefficient SE or Fa P 

LTO ~ Rosclass + f(Gagediff) . .  . 

Rosclass B 4.44 0.34 <0.001 

Rosclass C -1.38 0.55 0.015 

Rosclass E 2.63 0.63 0.001 

f(Gagediff) . 127.0 <0.001 

LTO ~ Rosclass + f(Gagediff) + 

f(Airdaily) 

. . . 

Rosclass B 4.44 0.33 <0.001 

Rosclass C -1.38 0.54 0.014 

Rosclass E 2.62 0.62 <0.001 

f(Gagediff) . 13.19 <0.001 

f(Airdaily) . 1.36 0.249 

* f(Gagediff) and f(Airdaily) indicate covariates were modeled as cubic splines with 4 knots; all other covariates entered GAM models in level 

form. 
** Assumes asymptotically normally distributed coefficient estimates  

*** A Standard errors (SE) are reported for level-variables, F-statistic values for smooth terms.  Coefficient values are reported only for level 

terms.  

 

 

 
 

Table 5. Corrected Landsat temperature values error evaluation for each site and date for the 

duration of the study period. The performance of the LSTc model (LTO ~ Rosclass + f(Gagediff) 

and LTO ~ Rosclass + f(Airdaily)) was examined on a sub-basin scale by predicting temperatures 

for the North Fork Anchor River, South Fork Anchor River and Chakok River basins for 

comparison with in-situ temperatures. RMSE is Root Mean Squared Error, which is a measure of 

the difference between values predicted by a model and the values observed. MAE is Mean 

Absolute Error, which is a measure of how close predictions are to the eventual outcomes. 

 LTO~Rosclass + f(Gagediff) LTO~Rosclass + f(Airdaily) 

Basin MAE RMSE MAE RMSE 

Anchor River 1.38 °C 1.62 °C 1.40 °C 1.56 °C 

Sub-Basin      
North Fork Anchor River  1.46 °C 1.82 °C 1.41 °C 1.78 °C 

South Fork Anchor River 1.20 °C 1.56 °C 1.10 °C 1.43 °C 

Chakok River  1.45 °C 1.78 °C 1.58 °C 1.93 °C 
* f(Gagediff) and f(Airdaily) indicate covariates were modeled as cubic splines with 4 knots; all other covariates entered GAM models in level 

form. 
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FIGURES  

 

Figure 1. The Anchor River watershed and locations of in-situ temperature collection field sites. 

U.S. Geological Survey stream discharge gage is annotated as USGS (Gage Number: 15239900; 

Latitude 59.4450, Longitude -151.4511), Natural Resource Conservation Service Snotel (Site 

Number: 1062; Latitude 59. 8597, Longitude -151. 3111) air temperature data collection site is 

annotated as SNTL. Field sites labeled SF are on the South Fork Anchor River, NF are on the 

North Fork Anchor River and CR are on the Chakok River.  
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Figure 2. The AICc top-ranked GAM (LTO ~ Rosclass + f(Gagediff)) displaying the relationship 

between LTO and Gagediff. f(Gagediff) indicates Gagediff entered the model as a cubic spline 

with four knots. DE refers to percent deviance explained, a measure of goodness of fit of a 

model.  

 

Figure 3. The AICc second-ranked GAM (LTO ~ Rosclass + f(Gagediff) + f(Airdaily)) 

displaying the Gagediff and Airdaily curves, both run as smoothing functions with 4 knots. DE 

refers to percent deviance explained, a measure of goodness of fit of a model.  
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Figure 4. GAM-produced LTO predictions from the top-ranked model (LTO ~ Rosclass + 

f(Gagediff)) compared to observed LTO across all dates and field sites. RMSE is Root Mean 

Squared Error, which is a measure of the difference between values predicted by a model and the 

values observed. MAE is Mean Absolute Error, which is a measure of how close predictions are 

to the eventual outcomes. 

 

 

 

Figure 5. GAM-produced LTO predictions from the second-ranked model (LTO ~ Rosclass + 

f(Gagediff) + f(Airdaily)) compared to observed LTO across all dates and field sites. RMSE is 

Root Mean Squared Error, which is a measure of the difference between values predicted by a 

model and the values observed. MAE is Mean Absolute Error, which is a measure of how close 

predictions are to the eventual outcomes. 
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Figure 6. Residuals from the top-ranked GAM (LTO ~ Rosclass + f(Gagediff)) by Landsat 8 TIR 

collection date.  

 

 

 

 

Figure 7. Residuals from the top-ranked GAM (LTO ~ Rosclass + f(Gagediff)) by field site. 

CR=Chakok River, NF=North Fork and SF=South Fork. Sites are displayed from downstream to 

upstream.  
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Figure 8. Residuals from the second-ranked GAM (LTO ~ Rosclass + f(Gagediff) + f(Airdaily)) 

by Landsat TIR collection date. 

 

 

 

 

Figure 9. Residuals from the second-ranked GAM (LTO ~ Rosclass + f(Gagediff) + f(Airdaily)) 

by field site. CR=Chakok River, NF=North Fork and SF=South Fork. Sites are displayed from 

downstream to upstream.  
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Figure 10. GAM-produced LTO predictions from running the mode with Rosclass (LTO ~ 

Rosclass) as the only variable compared to observed LTO across all dates and field sites. RMSE 

is Root Mean Squared Error, which is a measure of the difference between values predicted by a 

model and the values observed. MAE is Mean Absolute Error, which is a measure of how close 

predictions are to the eventual outcomes. 

 

 

Figure 11. GAM-produced LTO predictions from running the mode with Gagediff (LTO ~ 

f(Gagediff)) as the only variable compared to observed LTO across all dates and field sites. 

RMSE is Root Mean Squared Error, which is a measure of the difference between values 

predicted by a model and the values observed. MAE is Mean Absolute Error, which is a measure 

of how close predictions are to the eventual outcomes. 
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Figure 12. Raw LTO distributions across all dates and field sites by Rosclass. 

 

 

 

 

Figure 13. Raw LTO distribution across all dates and sites by Gagediff. 
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Figure 14. Mean LTO by date and Gagediff. Each mean is labeled by Landsat 8 TIR collection 

date. Gagediff ranges and their associated mean LTO temperature values are included. As the 

Gagediff ranges grows, mean LTO grows concurrently.  

 

Figure 15. Stream discharge and air temperature in the week preceding the 6/15/2015 Landsat 8 

TIR collection. This week experienced peak air temperature observed during the study (28.8 ℃) 

and declining stream discharge (Gagediff= -0.28 ft.).  
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Figure 16. Stream discharge and air temperature in the week preceding the 7/1/2015 Landsat 8 

TIR collection. Air temperature was within average range (5-20 ℃) and stream discharge was 

extremely stable (Gagediff = 0.005 ft).  

 

 

 

Figure 17. Raw LTO across Landsat 8 TIR collection dates at all field sites.  
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Figure 18. Raw LTO across all dates and field sites with Gagediff (x-axis) and Rosclass (plot 

symbols). The Gagediff ranges of ±0.1 ft. and ±0.2 ft. are marked as dashed lines. 

 

 

 

Figure 19. North Fork Anchor River model-produced TIR corrections. A corrected Landsat 

temperature value (LSTC) can be calculated by subtracting the model-produced LTO predictions 

(LTOŷ) from the corresponding raw Landsat temperature value (LSTRaw) as: LSTC = LSTRaw - 

LTOŷ. Corrected Landsat temperatures were calculated for each site and date for the duration of 

the study period using predication from two LSTc models:(LTO ~ Rosclass + f(Gagediff) and 

LTO ~ Rosclass + f(Airdaily). 
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Figure 20. North Fork Anchor River model-produced TIR corrections and in-situ temperature 

along the 1:1 line. A corrected Landsat temperature value (LSTC) can be calculated by 

subtracting the model-produced LTO predictions (LTOŷ) from the corresponding raw Landsat 

temperature value (LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected Landsat temperatures were 

calculated for each site and date for the duration of the study period using predication from two 

LSTc models:(LTO ~ Rosclass + f(Gagediff) and LTO ~ Rosclass + f(Airdaily). 
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Figure 21. South Fork Anchor River model-produced TIR corrections. A corrected Landsat 

temperature value (LSTC) can be calculated by subtracting the model-produced LTO predictions 

(LTOŷ) from the corresponding raw Landsat temperature value (LSTRaw) as: LSTC = LSTRaw - 

LTOŷ. Corrected Landsat temperatures were calculated for each site and date for the duration of 

the study period using predication from two LSTc models:(LTO ~ Rosclass + f(Gagediff) and 

LTO ~ Rosclass + f(Airdaily). 
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Figure 22. South Fork Anchor River model-produced TIR corrections and in-situ temperature 

along the 1:1 line. A corrected Landsat temperature value (LSTC) can be calculated by 

subtracting the model-produced LTO predictions (LTOŷ) from the corresponding raw Landsat 

temperature value (LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected Landsat temperatures were 

calculated for each site and date for the duration of the study period using predication from two 

LSTc models:(LTO ~ Rosclass + f(Gagediff) and LTO ~ Rosclass + f(Airdaily). 
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Figure 23. Chakok River model-produced TIR corrections. A corrected Landsat temperature 

value (LSTC) can be calculated by subtracting the model-produced LTO predictions (LTOŷ) from 

the corresponding raw Landsat temperature value (LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected 

Landsat temperatures were calculated for each site and date for the duration of the study period 

using predication from two LSTc models:(LTO ~ Rosclass + f(Gagediff) and LTO ~ Rosclass + 

f(Airdaily). 
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Figure 24. Chakok River model-produced TIR corrections and in-situ temperature along the 1:1 

line. A corrected Landsat temperature value (LSTC) can be calculated by subtracting the model-

produced LTO predictions (LTOŷ) from the corresponding raw Landsat temperature value 

(LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected Landsat temperatures were calculated for each 

site and date for the duration of the study period using predication from two LSTc models:(LTO 

~ Rosclass + f(Gagediff) and LTO ~ Rosclass + f(Airdaily). 

 

 

 

 

 



54 

 

 

Figure 25. Anchor River model-produced TIR corrections. A corrected Landsat temperature 

value (LSTC) can be calculated by subtracting the model-produced LTO predictions (LTOŷ) from 

the corresponding raw Landsat temperature value (LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected 

Landsat temperatures were calculated for each site and date for the duration of the study period 

using predication from two LSTc models:(LTO ~ Rosclass + f(Gagediff) and LTO ~ Rosclass + 

f(Airdaily). 
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Figure 26. Anchor River model-produced TIR corrections and in-situ temperature along the 1:1 

line. A corrected Landsat temperature value (LSTC) can be calculated by subtracting the model-

produced LTO predictions (LTOŷ) from the corresponding raw Landsat temperature value 

(LSTRaw) as: LSTC = LSTRaw - LTOŷ. Corrected Landsat temperatures were calculated for each 

site and date for the duration of the study period using predication from two LSTc models:(LTO 

~ Rosclass + f(Gagediff) and LTO ~ Rosclass + f(Airdaily). 
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APPENDIX  

Appendix 1. Quantized and calibrated scaled Digital Numbers (DN) representing the 

multispectral image data (USGS 2013).  

Lλ = MLQcal + AL 

Where: 

  Lλ  = TOA spectral radiance (Watts/( m2 * srad * μm)) 

  ML = Band-specific multiplicative rescaling factor from the metadata   

          (RADIANCE_MULT_BAND_x, where x is the band number) 

  AL = Band-specific additive rescaling factor from the metadata    

         (RADIANCE_ADD_BAND_x, where x is the band number) 

Qcal = Quantized and calibrated standard product pixel values (DN)    

 

 

T =   
𝐼𝑛((𝐾1/𝐿𝜆)+1))

𝐾2
 

Where: 

  T = At-satellite brightness temperature (K) 

  Lλ = TOA spectral radiance (Watts/( m2 * srad * μm)) 

  K1 = Band-specific thermal conversion constant from the metadata    

  (K1_CONSTANT_BAND_x, where x is the band number, 10 or 11) 

  K2 = Band-specific thermal conversion constant from the metadata    

  (K2_CONSTANT_BAND_x, where x is the band number, 10 or 11) 

 

Appendix 2. The atmospheric correction to account for Earth’s emitted radiation (Handcock et 

al. 2012).  

Lg(λ)= 
𝐿𝑠(𝜆)−𝐿𝑝(𝜆) 

𝜏(𝜆)
  

Where:  

Lg= land-leaving spectral radiance at a particular wavelength (Wm−2μm−1sr−1)  

Ls= sensor spectral radiance (Wm−2μm−1sr−1) 

Lp= path spectral radiance (Wm−2μm−1sr−1)  

τ= transmissivity  

λ= is the wavelength of the sensor  
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Appendix 3. The Rosgen Stream Classification field guide (reproduced from Rosgen 1996). This 

guide graphically describes each level 1 classification by slope, cross-section and valley view.  
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Appendix 4. Generalized Additive Model data and R script for model calls. 

 

R script to fit the top two GAM models using data provided in Table A4.1 is as follows: 

# R version 3.3.3 (2017-03-06) 

# mgcv version 1.8-17 

 

# Read in data after setting relevant working directory 

   setwd("your_directory") 

   dat <- read.csv ("data_from_tableA4.1.csv",header=T) 

# load mgcv 

   library(mgcv) 

# Fit AICc top model: 

   mod1 <- gam(LTO~RosClass+ s(GageDiff,k=4), data=dat) 

   summary(mod1) 

# Fit second best AICc model: 

   mod2 <- gam(LTO~RosClass+ s(GageDiff,k=4) + s(AirDaily,k=4), data=dat) 

   summary(mod2) 

# Fit the model with RosClass and AirDaily only    

   mod3 <- gam(LTO~RosClass+ s(AirDaily,k=4), data=dat) 

   summary(mod3) 
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Table A4.1 Cleaned and processed data for Generalized Additive Modelinga 

 

 

aField codes:  

SiteCode: In-situ and Landsat temperature pixel sites. 

SiteCode Water Light Medium Dark LTO DateTime RosClass PWC GageDaily GageWeekly GageDiff AirDaily AirWeekly AirDiff

NF-1 55.31148 44.68852 0 0 3.0233 5/30/2015 C 3 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

NF-2 41.17157 0 58.82843 0 6.895 5/30/2015 B 2 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

NF-3 35.33333 0 27.13889 37.52778 0.4516 5/30/2015 B 2 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

NF-4 8.611111 0 0 91.38889 7.4984 5/30/2015 B 1 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

NF-5 19.38889 0 0 80.61111 6.895 5/30/2015 B 1 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

CR-1 27.13889 0 72.86111 0 6.9691 5/30/2015 E 2 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

CR-2 12.77778 0 87.22222 0 12.2372 5/30/2015 E 1 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

SF-3 71.85126 0 25.54978 2.59896 6.002 5/30/2015 B 3 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

SF-2 100 0 0 0 5.4063 5/30/2015 C 4 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

SF-1 61.36 36.64 2 0 5.9175 5/30/2015 C 3 1.012083 1.17494048 -0.16286 15.2375 6.931548 8.305952

NF-1 55.31148 44.68852 0 0 9.5342 6/15/2015 C 3 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

NF-2 41.17157 0 58.82843 0 14.9246 6/15/2015 B 2 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

NF-3 35.33333 0 27.13889 37.52778 12.2863 6/15/2015 B 2 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

NF-4 8.611111 0 0 91.38889 14.2114 6/15/2015 B 1 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

NF-5 19.38889 0 0 80.61111 14.9246 6/15/2015 B 1 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

CR-1 27.13889 0 72.86111 0 13.015 6/15/2015 E 2 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

CR-2 12.77778 0 87.22222 0 18.5543 6/15/2015 E 1 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

SF-3 71.85126 0 25.54978 2.59896 14.858 6/15/2015 B 3 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

SF-2 100 0 0 0 14.2823 6/15/2015 C 4 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

SF-1 61.36 36.64 2 0 12.6547 6/15/2015 C 3 0.942917 1.22267857 -0.27976 19.8 8.90119 10.89881

NF-1 55.31148 44.68852 0 0 1.7695 7/1/2015 C 3 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

NF-2 41.17157 0 58.82843 0 -2.8157 7/1/2015 B 2 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

NF-3 35.33333 0 27.13889 37.52778 -2.114 7/1/2015 B 2 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

NF-4 8.611111 0 0 91.38889 -0.8698 7/1/2015 B 1 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

NF-5 19.38889 0 0 80.61111 0.7621 7/1/2015 B 1 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

CR-1 27.13889 0 72.86111 0 3.5133 7/1/2015 E 2 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

CR-2 12.77778 0 87.22222 0 3.9852 7/1/2015 E 1 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

SF-3 71.85126 0 25.54978 2.59896 -0.2702 7/1/2015 B 3 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

SF-2 100 0 0 0 -5.67162 7/1/2015 C 4 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

SF-1 61.36 36.64 2 0 -3.0995 7/1/2015 C 3 0.730417 0.72541667 0.005 8.529167 10.8869 -2.35774

NF-1 55.31148 44.68852 0 0 1.2103 8/11/2015 C 3 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

NF-2 41.17157 0 58.82843 0 1.14007 8/11/2015 B 2 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

NF-3 35.33333 0 27.13889 37.52778 3.0348 8/11/2015 B 2 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

NF-4 8.611111 0 0 91.38889 4.0559 8/11/2015 B 1 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

NF-5 19.38889 0 0 80.61111 1.14007 8/11/2015 B 1 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

CR-1 27.13889 0 72.86111 0 5.589 8/11/2015 E 2 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

CR-2 12.77778 0 87.22222 0 6.8461 8/11/2015 E 1 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

SF-3 71.85126 0 25.54978 2.59896 4.2579 8/11/2015 B 3 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

SF-2 100 0 0 0 4.1566 8/11/2015 C 4 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

SF-1 61.36 36.64 2 0 0.9915 8/11/2015 C 3 0.587083 0.68757576 -0.10049 10.85 14.10909 -3.25909

NF-1 55.31148 44.68852 0 0 2.114686 8/18/2015 C 3 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

NF-2 41.17157 0 58.82843 0 3.112142 8/18/2015 B 2 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

NF-3 35.33333 0 27.13889 37.52778 5.033159 8/18/2015 B 2 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

NF-4 8.611111 0 0 91.38889 4.716448 8/18/2015 B 1 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

NF-5 19.38889 0 0 80.61111 6.026026 8/18/2015 B 1 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

CR-1 27.13889 0 72.86111 0 3.966416 8/18/2015 E 2 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

CR-2 12.77778 0 87.22222 0 5.986457 8/18/2015 E 1 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

SF-3 71.85126 0 25.54978 2.59896 4.063837 8/18/2015 B 3 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

SF-2 100 0 0 0 1.077316 8/18/2015 C 4 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

SF-1 61.36 36.64 2 0 2.565439 8/18/2015 C 3 0.95125 0.58375 0.3675 13.2 10.76012 2.439881

NF-1 55.31148 44.68852 0 0 -0.33228 9/12/2015 C 3 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

NF-2 41.17157 0 58.82843 0 1.113781 9/12/2015 B 2 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

NF-3 35.33333 0 27.13889 37.52778 1.589899 9/12/2015 B 2 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

NF-4 8.611111 0 0 91.38889 0.835816 9/12/2015 B 1 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

NF-5 19.38889 0 0 80.61111 0.193905 9/12/2015 B 1 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

CR-1 27.13889 0 72.86111 0 1.694735 9/12/2015 E 2 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

CR-2 12.77778 0 87.22222 0 2.470946 9/12/2015 E 1 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

SF-3 71.85126 0 25.54978 2.59896 -0.6744 9/12/2015 B 3 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

SF-2 100 0 0 0 -0.13913 9/12/2015 C 4 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512

SF-1 61.36 36.64 2 0 -0.34406 9/12/2015 C 3 0.98125 0.95535714 0.025893 6.091667 7.826786 -1.73512
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Water: Percent water in each pixel. 

Light: Percent light groundcover in each pixel. 

Medium: Percent medium groundcover in each pixel. 

Dark: Percent dark groundcover in each pixel. 

LTO: Landsat 8 TIR image-derived temperature – in situ stream temperature.   

Rosclass: Rosgen Stream Classification level I class type (A-F). 

PWC: Percent water class. 

Gagedaily: Daily stream stage average from Landsat image acquisition date and time.  

Gageweekly: Weekly stream stage average from Landsat image acquisition date and time.  

Gagediff: Daily average minus weekly average, this provides context for fluctuation.  

Airdaily: Daily average air temperature from Landsat image acquisition date and time.  

Airweekly: Weekly average air temperature from Landsat image acquisition date and time. 

Airdiff: Daily average minus weekly average, this provides context for fluctuation. 

 

 


