Tumyaraa Math Session #1 23/24

Workshop Expectations:

- 1. Everyone participates (be present in the moment)
- 2. There are no wrong answers just learning opportunities.
- 3. ASK QUESTIONS WHY (FYI I don't have all the answers)
- 4. Be Respectful
- 5. Have FUN!

Getting to Know You

Simple Easy!

Stand on the X and say:

Hi my name is _____

My favorite color is ______.

And my favorite snack/candy is ______

Over All Objectives:

After these 5 days I want each student to:

- → Develop a deeper understanding of basic math skills:
- **→** Become Lifelong Learners:
- → Have Fun with MATH!

Why Math?

Math underlies EVERYTHING in life!

Math is a system of thinking, and every problem in the world benefits from thinking.

Ben Orlin Math w/ Bad Drawings

Numbers

Natural Numbers - Whole Numbers - Integers - Rational Numbers - Irrational Numbers - Real Numbers

Numbers, Numbers, Numbers

Algebraic Properties

Commutative Property of Addition, Commutative Property of Multiplication, Associative Property of Addition, Associative Property of Multiplication, Distributive Property

Commutative Property -

Commutative Property of Addition:

$$3 + 2 = 2 + 3$$

Commutative Property of Multiplication:

$$3 \times 5 = 5 \times 3$$

Associative Property -

Associative Property of

Addition:

$$(a+b)+c = a+(b+c)$$

Associative Property of

Multiplication:

$$(axb)xc = ax(bxc)$$

Distributive Property -

$$a(b+c) = ab + ac$$

Positive and Negative Numbers

Chapters 4, 5, 6 Adding, Subtracting, Multiplying and Dividing

Real-world uses of positive and negative numbers:

Negative	Positive
Below-zero temperatures	Above-zero temperatures
Withdrawals from a bank account	Credit to a bank account
Loss of revenue	Gain in profits
Spending money	Saving money

Number Line

Absolute Value

- If the two integers have the same sign:
 - a. Add their absolute values.
 - b. Give the answer the same sign as the two original integers.
- If the two integers have different signs:
 - a. Subtract the lesser absolute value from the greater absolute value.
 - b. Give the answer the same sign as the integer with the greater absolute value

C.

Positive and Negative Numbers (+, -, x, /)

ZERO PAIR

$$(+3) + (-3) = 0$$

$$(-4) + (+4) = 0$$

$$(-100) + (+100) = 0$$

Positive and Negative Numbers (+, -, x, /)

You Teach!

- Partner A Method #1
- Partner B Method #2

Chapter 4 (p.24)

- Read, study, understand your method
 - Write 3 practice problems
- Close your book and teach your partner
 - Ask your "student" to complete the 3 practice problems using the method you taught them.

Positive and Negative Numbers (+, -, x, /)

The temperature in Bethel was 10* in the afternoon. By night time, the temperature had decreased by 15*. What was temperature at night?

 Which method are YOU going to use?

Positive and Negative Numbers and multiplication:

Google - Why a negative times a negative is a positive:

Why a negative times a negative is a positive (video) | Khan Academy

Order of Operation

Please, Excuse, My Dear, Aunt Sally

Order of Operations:

The Order of Operations are the rules that tells us the sequins=ce in which we should solve an expression with multiple operations.

Please	()		
Excuse	X ^e			
My Dear	x /			
Aunt Sally	+ -	•		
		√		

$$8(2-3)^3 + 2^4$$

= $8(-1)^3 + 2^4$
= $8 \times (-1) + 16$
= $-8 + 16$
= 8

Fractions

_

Equivalent Fractions

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

Comparing & Ordering Fractions

Comparing Fraction Worksheet

Money, Money

- 100 pennies equal or 1 dollar so a penny is 1/100 of a dollar or \$0.01
- 10 dimes equal 1 dollar so a dime is 10/100 of a dollar or 1/10 of a dollar or \$0.10
- How many nickels in a dollar? So a nickel is ____ of a dollar or ____ of a dollar or \$____

Time as a Fraction

- Quarter past 4
- It took a quarter of an hour
- ❖ Half an hour
- Quarter to 5

Statistics

Mean, Median, Mode & Range

Definitions - That you can remember!

MEAN - Mean Math Teacher Makes Me Do Math!

MEDIAN - Middle of the Road

MODE - Ala mode is ICE CREAM! We always want the MOST ice cream!

Displaying your Data

Bar graphs allow us to compare how something changes over time or to compare groups of data whereas pie graphs show the relationship of parts to the whole.

Khan Academy

Start your learning where your at.